Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491343

RESUMO

A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 205 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.

2.
medRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292649

RESUMO

A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 206 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.

3.
J Exp Child Psychol ; 231: 105655, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36863172

RESUMO

Working memory (WM) precision, or the fidelity with which items can be remembered, is an important aspect of WM capacity that increases over childhood. Why individuals are more or less precise from moment to moment and why WM becomes more stable with age are not yet fully understood. Here, we examined the role of attentional allocation in visual WM precision in children aged 8 to 13 years and young adults aged 18 to 27 years, as measured by fluctuations in pupil dilation during stimulus encoding and maintenance. Using mixed models, we examined intraindividual links between change in pupil diameter and WM precision across trials and the role of developmental differences in these associations. Through probabilistic modeling of error distributions and the inclusion of a visuomotor control task, we isolated mnemonic precision from other cognitive processes. We found an age-related increase in mnemonic precision that was independent of guessing behavior, serial position effects, fatigue or loss of motivation across the experiment, and visuomotor processes. Trial-by-trial analyses showed that trials with smaller changes in pupil diameter during encoding and maintenance predicted more precise responses than trials with larger changes in pupil diameter within individuals. At encoding, this relationship was stronger for older participants. Furthermore, the pupil-performance coupling grew across the delay period-particularly or exclusively for adults. These results suggest a functional link between pupil fluctuations and WM precision that grows over development; visual details may be stored more faithfully when attention is allocated efficiently to a sequence of objects at encoding and throughout a delay period.


Assuntos
Atenção , Memória de Curto Prazo , Adulto Jovem , Humanos , Criança , Memória de Curto Prazo/fisiologia , Atenção/fisiologia , Pupila/fisiologia , Rememoração Mental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...